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Biological Dioxygen Carriers
(1) Myoglobin and Hemoglobin. Dioxygen (O2) binds to
certain coordinatively unsaturated transition metal ions,
forming O2 complexes. Biological dioxygen carriers are
reversible O2 complexes in which the extent of binding
depends on temperature, partial pressure of oxygen, and
pH.

Myoglobin (Mb) and hemoglobin (Hb) are the most
common reversible O2 binders in biological systems; they
are responsible for the storage and transport of O2 in most
aerobic organisms. Myoglobin and hemoglobin are struc-
turally similar. Myoglobin contains one heme prosthetic

group; hemoglobin consists of four Mb-like subunits (2R
+ 2â), each containing one heme prosthetic group.

Myoglobin stores O2 in muscles to permit short bursts
of metabolism at rates much greater than those which
would be allowed by circulatory oxygen transport. In its
native deoxy form (Figure 1), the ferrous ion of the heme
is in a five-coordinate high-spin state (S ) 2), with the
imidazole group (His 93) serving as the axial ligand on
the proximal side. Myoglobin reversibly binds molecular
oxygen in the sixth, distal, vacant coordination site. Distal
amino acid residues (e.g., His 64) control the immediate
environment. They can induce polar, hydrophobic, or
steric interactions which help regulate the affinities of the
bound ligands.

Hemoglobin, on the other hand, transports O2 in blood
and adjusts binding affinity to various conditions required
for appropriate uptake and release of O2 through a series
of allosteric interactions.1,2 Through the “allosteric effect”,
the subsequent gas binding affinity of Hb is made greater
in the presence of O2 or carbon monoxide (CO) than in
their absence. Myoglobin, having only one heme site per
protein, shows no such effect.

(2) Control of Ligand-Binding Thermodynamics. Evi-
dence to date suggests that the amino acid residues on
the distal porphyrin face are capable of stabilizing the
oxygen adduct while destabilizing the competing complex
derived from binding of the endogenous toxic ligand CO.3

Studies have shown that, in the absence of the globin
protein, imidazole-ligated heme has a CO affinity much
greater than that of the protein-bound heme, indicating
that the protein plays a role in decreasing CO affinity.4

The most significant distal effect invoked in the stabi-
lization of O2 in Hb is the hydrogen-bonding interaction
between coordinated O2 and the distal histidine, which
was initially proposed by Pauling.5 Subsequent experi-
ments have provided evidence for H-bonding of iron-
bound dioxygen with the distal histidine.6-10 A unique Hb
from the bloodworm Ascaris (shown in Figure 2) has a
remarkably high affinity for O2, nearly 104 times that of
mammalian Hb.11,12 The origin of this high O2 affinity is
believed to be (1) a strong H-bond between tyrosine (Tyr
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30) and the terminal oxygen atom, (2) a weak H-bond
between glutamine (Gln 64) and the oxygen atom bound
to the heme iron, and (3) a third H-bond between these
two amino acids.13,14

In addition to molecular oxygen, a variety of other small
ligands are also able to bind to the sixth coordination site
of the heme iron.15-18 The in vivo degradation of heme,
for example, generates exactly one molecule of CO per
heme catabolized (in fact, approximately 1% of a human’s
hemoglobin is carbonylated due to this in vivo CO
production3), resulting in a partial pressure of CO on the
order of 10-3 Torr at the cellular level.19 This endogenous
toxic ligand binds heme Fe(II) tenaciously and thus
severely inhibits hemoprotein’s function.1,20-24 Hemo-
proteins are clearly designed by nature to transport and
store O2 in the presence of the endogenous poison, CO.
M values in the range of 100 are typical for Hb and Mb.
(The relative binding affinity of CO versus O2, referred to
as the M value, is a useful measure of a complex’s
susceptibility to poisoning by CO. M ) P1/2

O2/P1/2
CO, where

P1/2 is the partial pressure of O2 or CO at half-saturation.
Thus, a lower M value denotes a higher affinity for O2

relative to CO.)

In an unhindered environment, CO binds to heme iron
at an angle orthogonal to the porphyrin plane as outlined
in Figure 3A. In contrast, O2 is bound in an intrinsically
bent fashion at an angle of ∼120° (Figure 3B). The
coordinated CO is expected to be much less polar, whereas
the coordinated superoxide ion is polar, having a partial
negative charge on the terminal oxygen atom. Both steric
and polar effects in the distal region can affect the CO
and O2 binding affinities. Various distal groups have been
shown to affect the protein’s M value.25-27

(3) Some Controversial Issues. X-ray crystallographic
studies of CO-bound Hb and Mb provide evidence of
steric interactions between bound CO and protein resi-
dues as shown in Figure 4. The CO unit has been reported
to be tipped off-axis, relative to the heme normal plane,
from 7° to 47°.28-35 This conflicts with evidence from
vibrational spectroscopy which indicates a nearly upright
FeCO geometry.36,37 Recent ab initio calculations, based
on density functional theory (DFT), indicate that the
distortion potential is not as great as originally thought,
and that modest protein forces could push the CO off-
axis either via tilting or via bending.38-41 Spiro et al., using
gradient-corrected DFT and full vibrational analysis,
estimate that the energy requirement for a 0.9 Å off-axis
displacement, produced by a 9° bend and 14° tilt, may
be as little as 2 kcal/mol. Spiro and co-workers also point
out that even if the CO is tilted from the normal to the
porphyrin ring, the transition moment remains almost
normal to the ring. This has important implications for
optical selection experiments that suggest that the CO tilt
angle is almost zero. They conclude that the energy cost
for the distortions reported by crystallography no longer
seems excessive.40,41 Sage also suggests that distortion of
the surrounding protein to accommodate the heme-CO

FIGURE 1. Crystal structure of deoxymyoglobin.

FIGURE 2. Crystal structure of oxyhemoglobin in bloodworm
Ascaris.

FIGURE 3. Structures of CO- and O2-bound iron porphyrins.

FIGURE 4. Destabilization of CO in hemoglobin and myoglobin.
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complex may contribute significantly to the free energy
of CO binding.42,43

The presence of water molecules in the binding pocket
has also been suggested as contributing to the relative O2

and CO affinities, known as the water-displacement
model.32,44 On the basis of their site-directed mutagensis
of amino acids E7, E11, CD1, and B10, and kinetic
measurements of rate constants for O2 and CO bind-
ing,32,45,46 the authors suggest that the equilibrium binding
process requires the displacement of the distal pocket
water molecule found in the native deoxymyoglobin and
is enhanced when the water is absent due to replacement
of the distal His E7 with apolar residues, e.g., Leu E7. (This
seems a specious argument since relative equilibrium
binding of O2 vs CO involves removal of H2O in both
cases.) These authors also mention that it is still difficult
to quantitate the relative importance of direct steric
hindrance and electrostatic effects on CO binding to native
myoglobin. Jameson further analyzes the O2 and CO
binding of these mutants, using the discrimination factor,
the M value, and points out that the correlation of factors
stabilizing O2 binding and destabilizing CO binding is
weak.47

On the other hand, comparison of thermodynamically
and kinetically derived equilibrium constants should be
made with caution.27,48,49 It has been tacitly assumed that
equilibrium constants for CO and O2 binding, determined
kinetically as the ratio kon/koff, are equivalent to those
measured thermodynamically. Recent work however sug-
gests that these may differ by as much as a factor of 5.27,50

The reaction Mb + O2 S MbO2 is not always an elemen-

tary reaction, and the overall rate constants, kon and koff,
may be a composite of the rate constant for the bumpy
path from solvent to binding site. Eyring et al. point out
that reported O2 affinities, obtained kinetically under the
assumption of a single equilibrium step, only represent
apparent equilibrium constants.51

Synthetic Analogues of Hemoglobin and
Myoglobin Proteins
Synthetic models of Hb and Mb have been invaluable in
unraveling the subtle complexities of reversible O2 binding
and competitive inhibition by CO.47,49,52-71 Model systems
allow a systematic alteration which separately and col-
lectively provides information on how Hb works. The
subject of synthetic heme dioxygen binding has recently
been reviewed.48

(1) Synthetic Models for Reversible Oxygenation. In
principle, the necessary and sufficient conditions to mimic
oxyHb in synthetic model systems are the formation of a
5-coordinate, high-spin heme precursor having a proximal
base, as well as the prevention of µ-peroxo dimer forma-
tion.

The earliest structurally and functionally sound iron
porphyrin model of the Hb and Mb active sites was the
“picket fence” porphyrin.72-75 This model binds O2 re-
versibly, forming a diamagnetic O2 complex as evidenced
by its sharp 1H NMR signals at room temperature. (A
diamagnetic O2 adduct is an important measure of revers-
ible O2 binding behavior of model complexes.) Dioxygen
affinity studies of this model yielded values similar to
those exhibited by Hb and Mb (Table 1). The crystal
structure of the iron picket fence O2 adduct was deter-
mined as shown in Figure 5.76-78 Many O2 binding
porphyrin models were subsequently prepared and
characterized.64,76-81

(2) The Competitive CO Binding Problem. The CO
affinity of the picket fence porphyrin is more than 30 times
that of Hb however.82 If Hb or Mb had the same CO to O2

affinity ratio (M value) as the picket fence porphyrin,
mammals would suffocate from their own heme catabo-
lism.

Table 1. Gas Binding Data for Compounds from the
Literaturea

P1/2
O2

(Torr)
P1/2

CO

(Torr)
M

(P1/2
O2/P1/2

CO)

Proteins
Hb (T-State) aa 40 0.3 135
Hb (T-State) ba 140 0.3 460
Hb (R-State)a 0.22 1.4 × 10-3 150
Mba 0.37-1 0.014-0.025 20-40
Ascarisb 0.002 0.1 0.02

T-State Heme Models
Fe (picket fence)

(1,2-Me2Im)c
38 8.9 × 10-3 4280

Fe (TACN-capped)
(1,2-Me2Im)c

2.3 2.9 0.79

Fe (cyclam-capped)
(1,2-Me2Im)c

22 >3500 <0.006

Fe (cyclen-capped)
(1,2-Me2Im)c

760 >3500 <0.22

Fe (G1)
(1,2-Me2Im)c

0.035 0.35 0.10

Fe (G2)
(1,2-Me2Im)c

0.016 0.19 0.08

R-State Heme Models
Fe (4-atom-linked cap)

(1-MeIm)c
280 100 2.8

Fe (TACN-capped)
(1,5-DCIm)c

<0.2

Fe (cyclam-capped)
(1,5-DCIm)c

∼ 3 >3500 <0.003

Fe (cyclen-capped)
(1,5-DCIm)c

∼ 760 >3500 <0.22

a P1/2 values were measured under the following conditions: (a)
H2O, pH 7, 25 °C; (b) H2O, pH 7, 20 °C; (c) toluene, pH 7, 25 °C.
Note that changing the solvent polarity may slightly affect gas
binding affinities.

FIGURE 5. Crystal structure of dioxygen-bound picket fence
porphyrin.
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On the basis of picket fence models as well as Hb and
Mb X-ray crystal structures, Collman et al. proposed that
the distal histidine had a dual role of providing a H-bond
to the coordinated O2 and of decreasing CO affinity by
sterically preventing CO from binding in a linear man-
ner.25,26 Dioxygen, binding in a bent fashion, should be
free of such an interaction. Further work on the
“pocket,”82,83 “hybrid,”84 and “capped”68,85-90 porphyrins
(Figure 6) has provided additional evidence (Table 1) for
the plausibility of this hypothesis. For instance, the
decreased size of the binding cavity in the pocket por-
phyrins resulted in M values on the order of 200. Infrared
spectral studies of these compounds were consistent with
a CO more weakly bound than in the case of picket fence

porphyrin.82,83 In addition to the steric effect, Traylor et
al. demonstrate that the polarity of the gas binding packet
has a large effect on the M value of model complexes. They
argue that the M values in their studies are influenced by
an increase in O2 affinity with negligible change in CO
affinity.59,65

(3) Our Recent Success. Recently we reported a
versatile general method for attaching macrocycles over
a porphyrin ring in a single high-yielding step.91 This
“congruent multiple Michael addition” (Figure 7) does not
require high dilution and is facilitated by protic solvents
and the presence of metals such as Fe(II), Co(II), and
Zn(II) in the porphyrins. (More recently we reported two
alternative synthetic methods92,93 which greatly enhanced

FIGURE 6. Dioxygen-binding myoglobin analogues.

FIGURE 7. Capped porphyrins derived from the “congruent multiple Michael addition”.
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our ability to use them in conjuction with the Michael
addition method: either to probe the effects of varying
the length of the links between superstructure and por-
phyrin, or to add a nucleophile specifically to certain
pickets and not to others by controlling the reaction
conditions.) Using this new method, we designed, syn-
thesized, and characterized a series of Mb active site
analogues which differ in their gas binding cavity dimen-
sions (see Figure 6), allowing us to reexamine steric effects
on the equilibrium affinities of CO versus O2.94

Carbon monoxide and dioxygen gas binding to these
aza-crown-capped models was studied preliminarily by
1H NMR spectroscopy in d5-pyridine, which acts as both
the solvent and the axial ligand. Whereas a paramagnetic
NMR was observed with their O2- and CO-free forms,
indicating a 5-coordinate high-spin Fe(II) species, a
diamagnetic NMR characteristic of a low-spin species was
obtained upon O2 and CO binding. (A more detailed
discussion can be found elsewhere.79,81,94-98) Our quan-
titative gas titration data (Table 1) show that these aza-
crown-capped models (Figure 6) manifest an even higher
O2 affinity but a much reduced CO affinity compared with
Mb, resulting in M values close to 1.94 The cyclam-capped
porphyrin is particularly remarkable; while it exhibits a
“normal” O2 affinity, it does not bind CO at all (up to 1
atm of CO). The possible origin of this phenomenon can
be understood by examining the crystal structure of the
corresponding Zn(II) complex (Figure 8). The methylene
groups from the aza cap have hydrogen atoms projected
directly at an axis orthogonal to the porphyrin plane and
directly above the metal porphyrin center. The intrinsically
bent O2 ligand would not suffer from a nonbonded

interaction with these protons, but the CO ligand could
be strongly distorted and therefore destabilized. This work
again demonstrates that steric interactions can have
profound effects on CO binding affinity; it also suggests
that a steric effect cannot be ruled out as a major
determinant of Hb’s and Mb’s CO affinities. Nonetheless,
the detailed interaction between structural distortion and
equilibrium affinities of CO remains contro-
versial;59,65,90,99-101 in our opinion the discrimination of
CO is still a challenging question.

Stabilization of bound O2 is also poorly understood. A
distal histidine residue in Hb and Mb forms a weak
H-bond to the terminal oxygen in the O2 adduct. There
have been several attempts to imitate such a H-bond with
model Fe(II) porphyrins.102-106

In 1994, we reported a stable oxygen binding system
involving iron and cobalt “picnic basket” porphyrins
(Figure 9).69 This family of porphyrins consists of a distal
binding cavity with variable dimensions and an external
bulky axial ligand on the proximal side. Our 1H NMR and
O2 affinity measurements show that the iron and cobalt
picnic basket porphyrins both bind O2 reversibly at room
temperature with high affinities. The O2 affinity increases
as the basket size decreases, indicating a dipole-dipole
interaction between the terminally bound O2 and the
amide protons. The O2 affinities of the cobalt picnic basket
porphyrins are more sensitive to the change of basket sizes
than those of the corresponding iron porphyrin, consistent
with the proposal that Co-O2 adducts have more electron
density on the oxygen ligand than do the Fe-O2 adducts.

Very recently, we introduced two generations of den-
dritic iron(II) porphyrins as synthetic models of globular
hemoproteins in collaboration with scientists at ETH.107

In analogy to the protein surroundings, the densely
packed dendritic shell provides the iron heme with a
hydrophobic environment which allows reversible oxy-
genation to be achieved.

The dendritic Fe(II) porphyrins were mixed with 1000
molar equivalents of 1,2-dimethylimidazole (1,2-Me2Im),
forming a 5-coordinate high-spin Fe(II) complex (Figure
10). (1,2-Me2Im is known to form only a 1:1 high-spin
adduct with Fe(II) porphyrins.52) The resulting Fe(II)
porphyrin is therefore a good model for the lower affinity
T-state of Hb.

Gas binding studies indicate that these dendritic Fe(II)
porphyrins bind O2 and CO reversibly. Quantitative gas

FIGURE 8. Crystal structure of cyclam-capped zinc porphyrin.

FIGURE 9. Picnic basket porphyrin.
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titrations (Table 1) reveal that the CO affinities of the
dendritic porphyrins are lower than those of the picket
fence porphyrin but close to those of Hb, suggesting that,
as with Hb, bound CO may experience an interaction that
distorts binding from a favorable linear conformation.

Remarkably their O2 affinities are about 1500 times
greater than that of T-state hemoglobin, very close to
those of the high-affinity Hb of the aforementioned
bloodworm Ascaris. Why are the O2 affinities so great? We
propose that these may result from a H-bond between
the amide group (see Figure 10) and the terminal coor-
dinated oxygen atom. Our very recent EPR studies (un-
published results) on these Co(II)-substituted dendritic
porphyrins provide strong evidence for this hypothesis of
a H-bonding interaction.

Summary
Since the invention of the picket fence porphyrin, many
attempts have been made to elucidate the factors respon-
sible for gas binding specificity in hemoproteins. This
account summarizes our contributions with model com-
pounds. Emphasis is placed on our recent success in the
design and synthesis of functional heme models. In this
work, we present a class of aza-capped porphyrins that
demonstrate the profound effects steric interactions can
have on porphyrin CO affinity. With a series of iron and
cobalt picnic basket porphyrins we have examined the
dipole-dipole or H-bonding interaction between the
terminally bound dioxygen and the amide protons. Com-
parison of their O2 affinities indicates that electrostatic
interactions between the amide groups of the picnic
basket porphyrin and the CoO2 species are more sensitive
to the change of basket sizes than those of the corre-
sponding FeO2 species; this is consistent with proposals
that the CoO2 adducts have more electron density in the
O2 ligand than do the FeO2 adducts. We have also studied
dendritic Fe(II) porphyrins as T-state Hb models. These
dendritic porphyrins exhibit CO affinities similar to those
of Hb but remarkably higher O2 affinities, approaching
that of Hb Ascaris. This striking result indicates that (1)
as with Hb, bound CO experiences a destabilizing influ-

ence and (2) a H-bond between the terminal atom of
bound O2 and an amide group can drastically increases
O2 affinity. Our studies on heme models provide funda-
mental insights into the nature of O2 adduct stabilization
and CO ligand destabilization in hemoproteins.

Many issues remain unanswered, however. For in-
stance, is the binding affinity affected predominantly by
a single factor or by multiple factors? Does a steric effect
that sharply reduces CO affinity actually require an
observable geometric distortion? What are the spectro-
scopic signatures of this distortion? What is the role of
kinetics versus thermodynamics? Resolution of these is-
sues may provide further insights into ligand binding and
discrimination in native hemoglobin and myoglobin.
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